DATA SHEET

PCF8576D

Universal LCD driver for low multiplex rates

Product specification

Universal LCD driver for low multiplex rates

CONTENTS

1 FEATURES
2 GENERAL DESCRIPTION
3 ORDERING INFORMATION
4 BLOCK DIAGRAM
5 PINNING
6 FUNCTIONAL DESCRIPTION
6.1 Power-on reset
6.2 LCD bias generator
6.3 LCD voltage selector
6.3.1 LCD bias formulae
6.4 LCD drive mode waveforms

12
6.4.1 Static drive mode
6.4.2 1 : 2 multiplex drive mode
6.4.3 $1: 3$ multiplex drive mode
6.4.4 $1: 4$ multiplex drive mode
6.5 Oscillator
6.5.1 Internal clock
6.5.2 External clock
6.6 Timing
6.7 Display register
6.8 Segment outputs
$6.9 \quad$ Backplane outputs
6.10 Display RAM
6.11 Data pointer
6.12 Subaddress counter
6.13 Output bank selector
6.14 Input bank selector
6.15 Blinker

7 CHARACTERISTICS OF THE I²C-BUS
7.1 Bit transfer
7.2 Start and stop conditions
7.3 System configuration

Acknowledge
PCF8576D ${ }^{2}$ ²-bus controller
Input filters
$\mathrm{I}^{2} \mathrm{C}$-bus protocol
Command decoder
Display controller
Cascaded operation
LIMITING VALUES
HANDLING
DC CHARACTERISTICS
AC CHARACTERISTICS
BONDING PAD INFORMATION
DEVICE PROTECTION
TRAY INFORMATION
PACKAGE OUTLINE
SOLDERING
Introduction to soldering surface mount packages
Reflow soldering
Wave soldering
Manual soldering
Suitability of surface mount IC packages for wave and reflow soldering methods
DATA SHEET STATUS
DEFINITIONS
DISCLAIMERS
PURCHASE OF PHILIPS ${ }^{2}{ }^{2} \mathrm{C}$ COMPONENTS

Universal LCD driver for low multiplex rates

1 FEATURES

- Single-chip LCD controller/driver
- Selectable backplane drive configuration: static or 2/3/4 backplane multiplexing
- Selectable display bias configuration: static, $1 / 2$ and $1 / 3$
- Internal LCD bias generation with voltage-follower buffers
- 40 segment drives: up to twenty 8 -segment numeric characters; up to ten 15 -segment alphanumeric characters; or any graphics of up to 160 elements
- 40×4-bit RAM for display data storage
- Auto-incremental display data loading across device subaddress boundaries
- Display memory bank switching in static and duplex drive modes
- Versatile blinking modes
- Independent supplies possible for LCD and logic voltages
- Wide power supply range: from 1.8 to 5.5 V
- Wide logic LCD supply range: from 2.5 V for low-threshold LCDs and up to 6.5 V for guest-host LCDs and high-threshold (automobile) twisted nematic LCDs
- Low power consumption
- $400 \mathrm{kHz} \mathrm{I}^{2} \mathrm{C}$-bus interface
- TTL/CMOS compatible

- Compatible with 4, 8 or 16-bit microprocessors or microcontrollers
- May be cascaded for large LCD applications (up to 2560 elements possible)
- No external components
- Compatible with chip-on-glass technology
- Manufactured in silicon gate CMOS process.

2 GENERAL DESCRIPTION

The PCF8576D is a peripheral device which interfaces to almost any Liquid Crystal Display (LCD) with low multiplex rates. It generates the drive signals for any static or multiplexed LCD containing up to four backplanes and up to 40 segments and can easily be cascaded for larger LCD applications. The PCF8576D is compatible with most microprocessors/microcontrollers and communicates via a two-line bidirectional $I^{2} \mathrm{C}$-bus. Communication overheads are minimized by a display RAM with auto-incremental addressing, by hardware subaddressing and by display memory switching (static and duplex drive modes).

3 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
PCF8576DH	TQFP64	plastic thin quad flat package; 64 leads; body $10 \times 10 \times 1.0 \mathrm{~mm}$	SOT357-1
PCF8576DT	TSSOP56	plastic thin shrink small outline package; 56 leads; body width 6.1 mm	SOT364-1
PCF8576DU/DA	-	chips in tray	-
PCF8576DH/2 ${ }^{(1)}$	TQFP64	plastic thin quad flat package; 64 leads; body $10 \times 10 \times 1.0 \mathrm{~mm}$	SOT357-1
PCF8576DT/2 ${ }^{(1)}$	TSSOP56	plastic thin shrink small outline package; 56 leads; body width $6.1 ~ m m$	SOT364-1
PCF8576DU/DA/2 ${ }^{(1)}$	-	chips in tray	-
PCF8576DU/2DA/2 ${ }^{(1)}$	-	chip with bumps in tray	-

Note

1. These types have improved EMC immunity.

Fig. 1 Block diagram for version PCF8576DH.

Fig. 2 Block diagram for version PCF8576DT.
multiplex rates

Universal LCD driver for low multiplex rates

5 PINNING

SYMBOL	PIN		PAD	DESCRIPTION
	PCF8576DH	PCF8576DT	PCF8576DU	
SDA	10	44	1,58 and 59	$\mathrm{I}^{2} \mathrm{C}$-bus serial data input/output
SCL	11	45	2 and 3	$1^{2} \mathrm{C}$-bus serial clock input
CLK	13	47	5	external clock input/output
V_{DD}	14	48	6	supply voltage
SYNC	12	46	4	cascade synchronization input/output
OSC	15	49	7	internal oscillator enable input
A0 to A2	16 to 18	50 to 52	8 to 10	subaddress inputs
SA0	19	53	11	$1^{2} \mathrm{C}$-bus slave address input; bit 0
$\mathrm{V}_{\text {SS }}$	20	54	12	logic ground
V LCD	21	55	13	LCD supply voltage
BP0, BP2, BP1, BP3	25 to 28	56, 1, 2, 3	14 to 17	LCD backplane outputs
S0 to S39	$\begin{aligned} & 29 \text { to } 32,34 \text { to } 47, \\ & 49 \text { to } 64,2 \text { to } 7 \end{aligned}$	4 to 43	18 to 57	LCD segment outputs
n.c.	$\begin{aligned} & 1,8,9,22 \text { to } 24, \\ & 33 \text { and } 48 \end{aligned}$	-	-	not connected

Universal LCD driver for low

Fig. 3 Pin configuration (TQFP64).

Universal LCD driver for low multiplex rates

Fig. 4 Pin configuration (TSSOP56).

Universal LCD driver for low multiplex rates

6 FUNCTIONAL DESCRIPTION

The PCF8576D is a versatile peripheral device designed to interface any microprocessor/microcontroller with a wide variety of LCDs. It can directly drive any static or multiplexed LCD containing up to four backplanes and up to 40 segments.

The display configurations possible with the PCF8576D depend on the number of active backplane outputs required. A selection of display configurations is shown in Table 1; all of these configurations can be implemented in the typical system shown in Fig.5.

The host microprocessor/microcontroller maintains the 2 -line $\mathrm{I}^{2} \mathrm{C}$-bus communication channel with the PCF8576D. The internal oscillator is enabled by connecting pin OSC to pin $\mathrm{V}_{\text {SS }}$. The appropriate biasing voltages for the multiplexed LCD waveforms are generated internally. The only other connections required to complete the system are to the power supplies $\left(V_{D D}\right.$, $V_{S S}$ and $V_{L C D}$) and the LCD panel chosen for the application.

Table 1 Selection of display configurations

NUMBER OF		7-SEGMENTS NUMERIC		14-SEGMENTS ALPHANUMERIC		DOT MATRIX
BACKPLANES	SEGMENTS	DIGITS	INDICATOR SYMBOLS	CHARACTERS	INDICATOR SYMBOLS	
4	160	20	20	10	20	160 dots (4×40)
3	120	15	15	8	8	120 dots (3×40)
2	80	10	10	5	10	80 dots (2×40)
1	40	5	5	2	12	40 dots (1×40)

The resistance of the power supply lines must be kept to a minimum.
For chip-on-glass applications, due to Indium Tin Oxide (ITO) track resistance, each supply line must be routed separately between the chip and the connector.

Fig. 5 Typical system configuration.

Universal LCD driver for low multiplex rates

6.1 Power-on reset

At power-on the PCF8576D resets to the following starting conditions:

- All backplane outputs are set to $\mathrm{V}_{\mathrm{LCD}}$
- All segment outputs are set to $\mathrm{V}_{\mathrm{LCD}}$
- Drive mode ' 1 : 4 multiplex with $1 / 3$ bias' is selected
- Blinking is switched off
- Input and output bank selectors are reset (as defined in Table 4)
- The $\mathrm{I}^{2} \mathrm{C}$-bus interface is initialized
- The data pointer and the subaddress counter are cleared
- Display is disabled.

Data transfers on the $\mathrm{I}^{2} \mathrm{C}$-bus should be avoided for 1 ms following power-on to allow completion of the reset action.

6.2 LCD bias generator

Fractional LCD biasing voltages are obtained from an internal voltage divider comprising three resistors connected in series between $\mathrm{V}_{\mathrm{LCD}}$ and $\mathrm{V}_{\text {SS }}$. The middle resistor can be bypassed to provide a $1 / 2$ bias voltage level for the 1:2 multiplex configuration. The LCD voltage can be temperature compensated externally via the supply to pin $\mathrm{V}_{\mathrm{LCD}}$.

6.3 LCD voltage selector

The LCD voltage selector co-ordinates the multiplexing of the LCD in accordance with the selected LCD drive configuration. The operation of the voltage selector is controlled by MODE SET commands from the command decoder. The biasing configurations that apply to the preferred modes of operation, together with the biasing characteristics as functions of $\mathrm{V}_{\mathrm{LCD}}$ and the resulting Discrimination ratios (D), are given in Table 2.

A practical value for $\mathrm{V}_{\mathrm{LCD}}$ is determined by equating $\mathrm{V}_{\text {off(rms) }}$ with a defined LCD threshold voltage ($\mathrm{V}_{\text {th }}$), typically when the LCD exhibits approximately 10% contrast. In the static drive mode a suitable choice is $\mathrm{V}_{\mathrm{LCD}}>3 \mathrm{~V}_{\text {th }}$.

Multiplex drive modes of $1: 3$ and $1: 4$ with $1 / 2$ bias are possible but the discrimination and hence the contrast ratios are smaller.

6.3.1 LCD BIAS FORMULAE

Bias is calculated by the formula $\frac{1}{1+a}$
For $1 / 2$ bias, $a=1$; for $1 / 3$ bias, $a=2$.
The LCD on voltage ($\mathrm{V}_{\text {on }}$) is calculated by the formula
$v_{\text {op }} \sqrt{\frac{\frac{1}{N}+\left[(N-1) \cdot\left(\frac{1}{1+a}\right)\right]^{2}}{N}}$
The LCD off voltage ($\mathrm{V}_{\text {off }}$) is calculated by the formula
$v_{\text {op }} \sqrt{\frac{a^{2}-(2 a+N)}{N \cdot(1+a)^{2}}}$
where V_{op} is the resultant voltage at the LCD segment; N is the LCD drive mode: $1=$ static, $2=1: 2,3=1: 3$, $4=1: 4$.

Discrimination is the ratio of $\mathrm{V}_{\text {on }}$ to $\mathrm{V}_{\text {off }}$, and is determined
by the formula $\frac{V_{\text {on }}}{V_{\text {off }}}=\sqrt{\frac{(a+1)^{2}+(N-1)}{(a-1)^{2}+(N-1)}}$
Using the above formula, the discrimination for an LCD drive mode of $1: 3$ with $1 / 2$ bias is $\sqrt{3}=1.732$, and the discrimination for an LCD drive mode of $1: 4$ with $1 / 2$ bias
is $\frac{\sqrt{21}}{3}=1.528$.
The advantage of these LCD drive modes is a reduction of the LCD full-scale voltage $\mathrm{V}_{\mathrm{LCD}}$ as follows:

1 : 3 multiplex ($1 / 2$ bias):
$\mathrm{V}_{\mathrm{LCD}}=\sqrt{6} \times \mathrm{V}_{\text {off(rms) }}=2.449 \mathrm{~V}_{\text {off(rms })}$
1 : 4 multiplex ($1 / 2$ bias):
$\mathrm{V}_{\mathrm{LCD}}=\left[\frac{(4 \times \sqrt{3})}{3}\right]=2.309 \mathrm{~V}_{\text {off }(\mathrm{rms})}$
These compare with $\mathrm{V}_{\mathrm{LCD}}=3 \mathrm{~V}_{\text {off(rms) }}$ when $1 / 3$ bias is used.

Universal LCD driver for low multiplex rates

Table 2 Discrimination ratios

LCD DRIVE MODE	NUMBER OF		LCD BIAS CONFIGURATION	$\frac{V_{\text {off }(\mathrm{rms})}}{V_{\text {Icd }}}$	$\frac{V_{\text {on }(\mathrm{rms})}}{V_{\text {Icd }}}$	$D=\frac{V_{\text {on }(\mathrm{rms})}}{V_{\text {off }(\mathrm{rms})}}$
	BACKPLANES	LEVELS				
static	1	2	static	0	1	∞
1:2 multiplex	2	3	1/2	0.354	0.791	2.236
1:2 multiplex	2	4	1/3	0.333	0.745	2.236
1:3 multiplex	3	4	1/3	0.333	0.638	1.915
1:4 multiplex	4	4	1/3	0.333	0.577	1.732

6.4 LCD drive mode waveforms

6.4.1 STATIC DRIVE MODE

The static LCD drive mode is used when a single backplane is provided in the LCD. The backplane (BPn) and segment drive $\left(\mathrm{S}_{\mathrm{n}}\right)$ waveforms for this mode are shown in Fig.4.

Fig. 6 Static drive mode waveforms.

Universal LCD driver for low multiplex rates

6.4.2 1:2 MULTIPLEX DRIVE MODE

The 1:2 multiplex drive mode is used when two backplanes are provided in the LCD. This mode allows fractional LCD bias voltages of $1 / 2$ bias or $1 / 3$ bias as shown in Figs 7 and 8.

$$
\begin{aligned}
& \mathrm{V}_{\text {state1 } 1}(\mathrm{t})=\mathrm{V}_{\mathrm{S}_{\mathrm{n}}}(\mathrm{t})-\mathrm{V}_{\mathrm{BP} 0}(\mathrm{t}) \\
& \mathrm{V}_{\text {on }(\mathrm{mms})}=0.791 \mathrm{~V}_{\mathrm{LCD}} \\
& \mathrm{~V}_{\text {state2 }}(\mathrm{t})=\mathrm{V}_{\mathrm{S}_{\mathrm{n}}}(\mathrm{t})-\mathrm{V}_{\mathrm{BPP} 1}(\mathrm{t}) \\
& \mathrm{V}_{\text {off }(\mathrm{ms})}=0.354 \mathrm{~V}_{\mathrm{LCD}}
\end{aligned}
$$

Fig. 7 Waveforms for the $1: 2$ multiplex drive mode with $1 / 2$ bias.

Universal LCD driver for low multiplex rates

$$
\begin{aligned}
& \mathrm{V}_{\text {state1 } 1}(\mathrm{t})=\mathrm{V}_{\mathrm{S}_{\mathrm{n}}}(\mathrm{t})-\mathrm{V}_{\mathrm{BP} 0}(\mathrm{t}) \\
& \mathrm{V}_{\text {on }(\mathrm{rms})}=0.745 \mathrm{~V}_{\mathrm{LCD}} \\
& \mathrm{~V}_{\text {state2 }}(\mathrm{t})=\mathrm{V}_{\mathrm{S}_{\mathrm{n}}}(\mathrm{t})-\mathrm{V}_{\mathrm{BP} 1}(\mathrm{t}) \\
& \mathrm{V}_{\text {off }(\mathrm{rms})}=0.333 \mathrm{~V}_{\mathrm{LCD}}
\end{aligned}
$$

Fig. 8 Waveforms for the $1: 2$ multiplex drive mode with $1 / 3$ bias.

Universal LCD driver for low multiplex rates

6.4.3 1:3 MULTIPLEX DRIVE MODE

When three backplanes are provided in the LCD, the 1:3 multiplex drive mode applies (see Fig.9).

$$
\begin{aligned}
& \mathrm{V}_{\text {state1 }}(\mathrm{t})=\mathrm{V}_{\mathrm{S}_{n}}(\mathrm{t})-\mathrm{V}_{\mathrm{BPO}(\mathrm{t})} \\
& \mathrm{V}_{\text {on(ms) }}=0.638 \mathrm{~V}_{\mathrm{LCD}} \\
& \mathrm{~V}_{\text {state22 }}(\mathrm{t})=\mathrm{V}_{\mathrm{S}_{n}}(\mathrm{t})-\mathrm{V}_{\text {BP1 } 1}(\mathrm{t}) \\
& \mathrm{V}_{\text {off(ms) }}=0.333 \mathrm{~V}_{\text {LCD }}
\end{aligned}
$$

Fig. 9 Waveforms for the 1:3 multiplex drive mode.

Universal LCD driver for low multiplex rates

6.4.4 $1: 4$ MULTIPLEX DRIVE MODE

When four backplanes are provided in the LCD, the 1:4 multiplex drive mode applies (see Fig.10).

Fig. 10 Waveforms for the 1:4 multiplex drive mode.

Universal LCD driver for low multiplex rates

6.5 Oscillator

6.5.1 INTERNAL CLOCK

The internal logic of the PCF8576D and its LCD drive signals are timed either by its internal oscillator or by an external clock. The internal oscillator is enabled by connecting pin OSC to pin $\mathrm{V}_{\text {SS }}$. If the internal oscillator is used, the output from pin CLK can be used as the clock signal for several PCF8576Ds in the system that are connected in cascade. After power-up, pin SDA must be HIGH to guarantee that the clock starts.

6.5.2 EXTERNAL CLOCK

Pin CLK is enabled as an external clock input by connecting pin OSC to V_{DD}.
The LCD frame signal frequency is determined by the clock frequency (fclk).

A clock signal must always be supplied to the device; removing the clock may freeze the LCD in a DC state.

6.6 Timing

The PCF8576D timing controls the internal data flow of the device. This includes the transfer of display data from the display RAM to the display segment outputs. In cascaded applications, the correct timing relationship between each PCF8576D in the system is maintained by the synchronization signal at pin SYNC. The timing also generates the LCD frame signal whose frequency is derived from the clock frequency. The frame signal frequency is a fixed division of the clock frequency from either the internal or an external clock.
Frame frequency $=\frac{\mathrm{f}_{\mathrm{CLK}}}{24}$

6.7 Display register

The display latch holds the display data while the corresponding multiplex signals are generated. There is a one-to-one relationship between the data in the display latch, the LCD segment outputs and each column of the display RAM.

6.8 Segment outputs

The LCD drive section includes 40 segment outputs S0 to S39 which should be connected directly to the LCD. The segment output signals are generated in accordance with the multiplexed backplane signals and with data residing in the display latch. When less than 40 segment outputs are required, the unused segment outputs should be left open-circuit.

6.9 Backplane outputs

The LCD drive section includes four backplane outputs BP0 to BP3 which should be connected directly to the LCD. The backplane output signals are generated in accordance with the selected LCD drive mode. If less than four backplane outputs are required, the unused outputs can be left open-circuit. In the 1:3 multiplex drive mode, BP3 carries the same signal as BP1, therefore these two adjacent outputs can be tied together to give enhanced drive capabilities. In the 1:2 multiplex drive mode, BP0 and BP2, BP1 and BP3 respectively carry the same signals and may also be paired to increase the drive capabilities. In the static drive mode the same signal is carried by all four backplane outputs and they can be connected in parallel for very high drive requirements.

6.10 Display RAM

The display RAM is a static 40×4-bit RAM which stores LCD data. A logic 1 in the RAM bit-map indicates the on-state of the corresponding LCD segment; similarly, a logic 0 indicates the off-state. There is a one-to-one correspondence between the RAM addresses and the segment outputs, and between the individual bits of a RAM word and the backplane outputs. The first RAM column corresponds to the 40 segments operated with respect to backplane BP0 (see Fig.11). In multiplexed LCD applications the segment data of the second, third and fourth column of the display RAM are time-multiplexed with BP1, BP2 and BP3 respectively.

When display data is transmitted to the PCF8576D, the display bytes received are stored in the display RAM in accordance with the selected LCD drive mode. The data is stored as it arrives and does not wait for an acknowledge cycle as with the commands. Depending on the current multiplex drive mode, data is stored singularly, in pairs, triplets or quadruplets. For example, in the $1: 2$ mode, the RAM data is stored every second bit. To illustrate the filling order, an example of a 7-segment numeric display showing all drive modes is given in Fig.12; the RAM filling organization depicted applies equally to other LCD types.

With reference to Fig.12, in the static drive mode, the eight transmitted data bits are placed in bit 0 of eight successive display RAM addresses. In the 1:2 mode, the eight transmitted data bits are placed in bits 0 and 1 of four successive display RAM addresses. In the 1:3 mode, these bits are placed in bits 0,1 and 2 of three successive addresses, with bit 2 of the third address left unchanged. This last bit may, if necessary, be controlled by an additional transfer to this address but care should be taken to avoid overriding adjacent data because full bytes are always transmitted.

Universal LCD driver for low multiplex rates

In the 1:4 mode, the eight transmitted data bits are placed in bits $0,1,2$ and 3 of two successive display RAM addresses.

6.11 Data pointer

The addressing mechanism for the display RAM is realized using the data pointer. This allows the loading of an individual display data byte, or a series of display data bytes, into any location of the display RAM. The sequence commences with the initialization of the data pointer by the LOAD DATA POINTER command. Following this, an
arriving data byte is stored at the display RAM address indicated by the data pointer in accordance with the filling order shown in Fig.12. After each byte is stored, the contents of the data pointer are automatically incremented by a value dependent on the selected LCD drive mode: eight (static drive mode), four ($1: 2$ mode), three ($1: 3$ mode) or two ($1: 4$ mode). If an $\mathrm{I}^{2} \mathrm{C}$-bus data access is terminated early then the state of the data pointer will be unknown. The data pointer should be re-written prior to further RAM accesses.

Fig. 11 Display RAM bit-map showing direct relationship between display RAM addresses and segment outputs, and between bits in a RAM word and backplane outputs.

6.12 Subaddress counter

The storage of display data is determined by the contents of the subaddress counter. Storage is allowed to take place only when the contents of the subaddress counter agree with the hardware subaddress applied to A0, A1 and A2. The subaddress counter value is defined by the DEVICE SELECT command. If the contents of the subaddress counter and the hardware subaddress do not agree then data storage is inhibited but the data pointer is incremented as if data storage had taken place. The subaddress counter is also incremented when the data pointer overflows.
The storage arrangements described lead to extremely efficient data loading in cascaded applications. When a series of display bytes are sent to the display RAM, automatic wrap-over to the next PCF8576D occurs when the last RAM address is exceeded. Subaddressing across device boundaries is successful even if the change to the next device in the cascade occurs within a transmitted character (such as during the 14th display data byte transmitted in 1:3 mode).
The hardware subaddress should not be changed whilst the device is being accessed on the $\mathrm{I}^{2} \mathrm{C}$-bus interface.

6.13 Output bank selector

The output bank selector selects one of the four bits per display RAM address for transfer to the display latch. The actual bit chosen depends on the selected LCD drive mode and on the instant in the multiplex sequence. In $1: 4$ mode, all RAM addresses of bit 0 are selected, these are followed by the contents of bit 1 , bit 2 and then bit 3. Similarly in $1: 3$ mode, bits 0,1 and 2 are selected sequentially. In $1: 2$ mode, bits 0 and 1 are selected and, in static mode, bit 0 is selected. Signal SYNC will reset these sequences to the following starting points; bit 3 for 1: 4 mode, bit 2 for 1 : 3 mode, bit 1 for 1 : 2 mode and bit 0 for static mode.

The PCF8576D includes a RAM bank switching feature in the static and $1: 2$ drive modes. In the static drive mode, the BANK SELECT command may request the contents of bit 2 to be selected for display instead of the contents of bit 0 . In $1: 2$ mode, the contents of bits 2 and 3 may be selected instead of bits 0 and 1 . This allows display information to be prepared in an alternative bank and then selected for display when it is assembled.

Universal LCD driver for low multiplex rates

6.14 Input bank selector

The input bank selector loads display data into the display RAM in accordance with the selected LCD drive configuration. The BANK SELECT command can be used to load display data in bit 2 in static drive mode or in bits 2 and 3 in 1:2 mode. The input bank selector functions are independent of the output bank selector.

6.15 Blinker

The PCF8576D has a very versatile display blinking capability. The whole display can blink at a frequency selected by the BLINK command. Each blink frequency is a multiple integer value of the clock frequency; the ratio between the clock frequency and blink frequency depends on the blink mode selected, as shown in Table 3.

An additional feature allows an arbitrary selection of LCD segments to be blinked in the static and $1: 2$ drive modes. This is implemented without any communication overheads by the output bank selector which alternates the displayed data between the data in the display RAM bank and the data in an alternative RAM bank at the blink frequency. This mode can also be implemented by the BLINK command.

In the 1:3 and 1:4 drive modes, where no alternative RAM bank is available, groups of LCD segments can be blinked by selectively changing the display RAM data at fixed time intervals.

The entire display can be blinked at a frequency other than the nominal blink frequency by sequentially resetting and setting the display enable bit E at the required rate using the MODE SET command.

Table 3 Blinking frequencies

BLINK MODE	NORMAL OPERATING MODE RATIO	NOMINAL BLINK FREQUENCY
Off	-	blinking off
2 Hz	$\frac{\mathrm{f}_{\mathrm{CLK}}}{768}$	2 Hz
1 Hz	$\frac{\mathrm{f}_{\mathrm{CLK}}}{1536}$	1 Hz
0.5 Hz	$\frac{\mathrm{f}_{\mathrm{CLK}}}{3072}$	0.5 Hz

Note

1. Blink modes 0.5 , 1 and 2 Hz , and nominal blink frequencies $0.5,1$ and 2 Hz correspond to an oscillator frequency ($\mathrm{f}_{\mathrm{CLK}}$) of 1536 Hz at pin CLK. The oscillator frequency range is given in Chapter 11.
19

$x=$ data bit unchanged.
Fig. 12 Relationships between LCD layout, drive mode, display RAM filling order and display data transmitted over the $\mathrm{I}^{2} \mathrm{C}$-bus.
G9LG8JOd

Universal LCD driver for low multiplex rates

7 CHARACTERISTICS OF THE I²C-BUS

The ${ }^{2} \mathrm{C}$-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

In chip-on-glass applications where the track resistance from the SDA pad to the system SDA line can be significant, a potential divider is generated by the bus pull-up resistor and the Indium Tin Oxide (ITO) track resistance. It is therefore necessary to minimize the track resistance from the SDA pad to the system SDA line to guarantee a valid LOW-level during the acknowledge cycle.

7.1 Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal (see Fig.13).

7.2 Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line while the clock is HIGH is defined as the START condition (S).
A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P), (see Fig.14).

7.3 System configuration

A device generating a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves', (see Fig.15).

7.4 Acknowledge

The number of data bytes that can be transferred from transmitter to receiver between the START and STOP conditions is unlimited. Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH-level signal on the bus that is asserted by the transmitter during which time the master generates an extra acknowledge related clock pulse. An addressed slave receiver must generate an acknowledge after receiving each byte. Also a master receiver must generate an acknowledge after receiving each byte that has been clocked out of the slave transmitter. The acknowledging device must pull-down the SDA line during the
acknowledge clock pulse so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP condition (see Fig.16).

7.5 PCF8576D ${ }^{12} \mathrm{C}$-bus controller

The PCF8576D acts as an $I^{2} \mathrm{C}$-bus slave receiver. It does not initiate ${ }^{2} \mathrm{C}$-bus transfers or transmit data to an $\mathrm{I}^{2} \mathrm{C}$-bus master receiver. The only data output from the PCF8576D are the acknowledge signals of the selected devices. Device selection depends on the $\mathrm{I}^{2} \mathrm{C}$-bus slave address, on the transferred command data and on the hardware subaddress.

In single device applications, the hardware subaddress inputs $A 0, A 1$ and $A 2$ are normally tied to $V_{S S}$ which defines the hardware subaddress 0 . In multiple device applications $A 0$, $A 1$ and $A 2$ are tied to $V_{S S}$ or $V_{D D}$ in accordance with a binary coding scheme such that no two devices with a common $I^{2} \mathrm{C}$-bus slave address have the same hardware subaddress.

7.6 Input filters

To enhance noise immunity in electrically adverse environments, RC low-pass filters are provided on the SDA and SCL lines.

$7.7 \quad I^{2} \mathrm{C}$-bus protocol

Two I²C-bus slave addresses (01110000 and 01110010) are reserved for the PCF8576D. The least significant bit of the slave address that a PCF8576D will respond to is defined by the level tied to its SA0 input. The PCF8576D is a write-only device and will not respond to a read access. Having two reserved slave addresses allows the following on the same $\mathrm{I}^{2} \mathrm{C}$-bus:

- Up to 16 PCF8576Ds for very large LCD applications
- The use of two types of LCD multiplex drive.

The $\mathrm{I}^{2} \mathrm{C}$-bus protocol is shown in Fig.17. The sequence is initiated with a START condition (S) from the ${ }^{2} \mathrm{C}$-bus master which is followed by one of two possible PCF8576D slave addresses available. All PCF8576Ds whose SA0 inputs correspond to bit 0 of the slave address respond by asserting an acknowledge in parallel. This $1^{2} \mathrm{C}$-bus transfer is ignored by all PCF8576Ds whose SA0 inputs are set to the alternative level.

Universal LCD driver for low multiplex rates

After an acknowledgement, one or more command bytes follow that define the status of each addressed PCF8576D.

The last command byte sent is identified by resetting its most significant bit, continuation bit C, (see Fig.18). The command bytes are also acknowledged by all addressed PCF8576Ds on the bus.

After the last command byte, one or more display data bytes may follow. Display data bytes are stored in the display RAM at the address specified by the data pointer and the subaddress counter. Both data pointer and subaddress counter are automatically updated and the data directed to the intended PCF8576D device.

An acknowledgement after each byte is asserted only by the PCF8576Ds that are addressed via address lines A0,

A 1 and A 2 . After the last display byte, the $\mathrm{I}^{2} \mathrm{C}$-bus master asserts a STOP condition (P). Alternately a START may be asserted to RESTART an $\mathrm{I}^{2} \mathrm{C}$-bus access.

7.8 Command decoder

The command decoder identifies command bytes that arrive on the $\mathrm{I}^{2} \mathrm{C}$-bus. All available commands carry a continuation bit C in their most significant bit position as shown in Fig.18. When this bit is set, it indicates that the next byte of the transfer to arrive will also represent a command. If this bit is reset, it indicates that the command byte is the last in the transfer. Further bytes will be regarded as display data.

The five commands available to the PCF8576D are defined in Table 4.

Fig. 13 Bit transfer.

Fig. 14 Definition of START and STOP conditions.

Universal LCD driver for low multiplex rates

Fig. 15 System configuration.

Fig. 16 Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$-bus.

Fig. $17{ }^{1}{ }^{2} \mathrm{C}$-bus protocol.

Universal LCD driver for low multiplex rates

Table 4 Definition of PCF8576D commands

COMMAND	OPCODE								OPTIONS	DESCRIPTION
MODE SET	C	1	0	(1)	E	B	M1	M0	Table 5	Defines LCD drive mode.
									Table 6	Defines LCD bias configuration.
									Table 7	Defines display status; the possibility to disable the display allows implementation of blinking under external control.
LOAD DATA POINTER	C	0	P5	P4	P3	P2	P1	P0	Table 8	Six bits of immediate data, bits P5 to P0, are transferred to the data pointer to define one of forty display RAM addresses.
DEVICE SELECT	C	1	1	0	0	A2	A1	A0	Table 9	Three bits of immediate data, bits A0 to A2, are transferred to the subaddress counter to define one of eight hardware subaddresses.
BANK SELECT	C	1	1	1	1	0	I	O	Table 10	Defines input bank selection (storage of arriving display data).
									Table 11	Defines output bank selection (retrieval of LCD display data); the BANK SELECT command has no effect in $1: 3$ and $1: 4$ multiplex drive modes.
BLINK	C	1	1	1	0	A	BF1	BF0	Table 12	Defines the blink frequency.
									Table 13	Selects the blink mode; normal operation with frequency set by BF1, BF0 or blinking by alternating display RAM banks; alternating RAM bank blinking does not apply in $1: 3$ and $1: 4$ multiplex drive modes.

Note

1. Not used.

Universal LCD driver for low multiplex rates

Table 5 Mode set option 1

LCD DRIVE MODE		BITS	
DRIVE MODE	BACKPLANE	M1	M0
Static	BP0	0	1
$1: 2$	BP0, BP1	1	0
$1: 3$	BP0, BP1, BP2	1	1
$1: 4$	BP0, BP1, BP2, BP3	0	0

Table 6 Mode set option 2

LCD BIAS	BIT B
$1 / 3$ bias	0
$1 / 2$ bias	1

Table 7 Mode set option 3

DISPLAY STATUS	BIT E
Disabled (blank)	0
Enabled	1

Table 8 Load data pointer option 1

DESCRIPTION	BITS					
6 bit binary value of 0 to 39	P5	P4	P3	P2	P1	P0

Table 9 Device select option 1

DESCRIPTION	BITS		
3 bit binary value of 0 to 7	A2	A1	A0

Table 10 Bank select option 1 (input)

MODE		BIT I
STATIC	$\mathbf{1 : 2}$	
RAM bit 0	RAM bits 0 and 1	0
RAM bit 2	RAM bits 2 and 3	1

Table 11 Bank select option 2 (output)

MODE		BIT O
STATIC	$\mathbf{1 : 2}$	
RAM bit 0	RAM bits 0 and 1	0
RAM bit 2	RAM bits 2 and 3	1

Table 12 Blink option 1

BLINK FREQUENCY	BITS	
	BF1	BF0
Off	0	0
2 Hz	0	1
1 Hz	1	0
0.5 Hz	1	1

Table 13 Blink option 2

BLINK MODE	BIT A
Normal blinking	0
Alternate RAM bank blinking	1

Note

1. Normal blinking is assumed when LCD multiplex drive modes 1:3 or 1:4 are selected.

7.9 Display controller

The display controller executes the commands identified by the command decoder. It contains the device's status registers and co-ordinates their effects. The display controller is also responsible for loading display data into the display RAM in the correct filling order.

7.10 Cascaded operation

In large display configurations, up to 16 PCF8576Ds can be differentiated on the same $\mathrm{I}^{2} \mathrm{C}$-bus by using the 3 -bit hardware subaddresses (A0, A1 and A2) and the programmable $\mathrm{I}^{2} \mathrm{C}$-bus slave address (SA0). PCF8576Ds connected in cascade are synchronized to allow the backplane signals from only one device in the cascade to be shared. This arrangement is cost-effective in large LCD applications since the backplane outputs of only one device need to be through-plated to the backplane electrodes of the display. The other cascaded PCF8576Ds contribute additional segment outputs but their backplane outputs are left open-circuit (see Fig.19).

Universal LCD driver for low multiplex rates

All PCF8576Ds connected in cascade are correctly synchronized by the $\overline{\text { SYNC }}$ signal. This synchronization is guaranteed after the Power-on reset. The only time that SYNC is likely to be needed is if synchronization is lost accidentally, for example, by noise in adverse electrical environments, or if the LCD multiplex drive mode is changed in an application using several cascaded PCF8576Ds, as the drive mode cannot be changed on all of the cascaded devices simultaneously. SYNC can be either an input or an output signal; a SYNC output is implemented as an open-drain driver with an internal pull-up resistor. A PCF8576D asserts $\overline{\text { SYNC }}$ at the start of its last active backplane signal, and monitors the SYNC line at all other times. If cascade synchronization is lost, it will be restored by the first PCF8576D to assert SYNC. The timing relationship between the backplane waveforms and the SYNC signal for each LCD drive mode is shown in Fig. 20.

Table $14 \overline{\text { SYNC }}$ contact resistance

NUMBER OF DEVICES	MAXIMUM CONTACT RESISTANCE
2	6000Ω
3 to 5	2200Ω
6 to 10	1200Ω
10 to 16	700Ω

The contact resistance between the SYNC input/output on each cascaded device must be controlled. If the resistance is too high, the device will not be able to synchronize properly; this is particularly applicable to chip-on-glass applications. The maximum $\overline{\text { SYNC }}$ contact resistance allowed for the number of devices in cascade is given in Table 14.

Fig. 19 Cascaded PCF8576D configuration.

Universal LCD driver for low multiplex rates

(a) static drive mode.

(b) $1: 2$ multiplex drive mode.

(c) $1: 3$ multiplex drive mode.

BP3

Fig. 20 Synchronization of the cascade for the various PCF8576D drive modes.

Universal LCD driver for low multiplex rates

8 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DD}	supply voltage	-0.5	+6.5	V
$\mathrm{~V}_{\mathrm{LCD}}$	LCD supply voltage	$\mathrm{V}_{\mathrm{SS}}-0.5$	+7.5	V
$\mathrm{~V}_{\mathrm{i} 1}$	input voltage CLK, SYNC, SA0, OSC, A0 to A2	$\mathrm{V}_{\mathrm{SS}}-0.5$	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
$\mathrm{~V}_{\mathrm{i} 2}$	input voltage SCL and SDA	$\mathrm{V}_{\mathrm{SS}}-0.5$	+6.5	V
$\mathrm{~V}_{\mathrm{O}}$	output voltage S0 to S39, BP0 to BP3	$\mathrm{V}_{\mathrm{SS}}-0.5$	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
I_{I}	DC input current	-10	+10	mA
I_{O}	DC output current	-10	+10	mA
I_{DD}	V_{DD} current	-50	+50	mA
I_{SS}	V_{SS} current	-50	+50	mA
$\mathrm{I}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{LCD}}$ current	-50	+50	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	-	400	mW
P_{O}	power dissipation per output	-	100	mW
$\mathrm{~T}_{\text {stg }}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$

9 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see "Handling MOS Devices").

Universal LCD driver for low multiplex rates

10 DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=1.8$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=2.5$ to $6.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
$V_{\text {DD }}$	supply voltage		1.8	-	5.5	V
$\mathrm{V}_{\text {LCD }}$	LCD supply voltage	note 1	2.5	-	6.5	V
I_{DD}	supply current	note 2; f. ${ }_{\text {CLK }}=1536 \mathrm{~Hz}$	-	8	20	$\mu \mathrm{A}$
lLCD	LCD supply current	note 2; f $\mathrm{CLK}=1536 \mathrm{~Hz}$	-	24	60	$\mu \mathrm{A}$
Logic						
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage CLK, SYNC, OSC, A0 to A2 and SAO		$\mathrm{V}_{\text {SS }}$	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
V_{IH}	HIGH-level input voltage CLK, SYNC, OSC, A0 to A2 and SAO		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{D D}$	V
$\mathrm{V}_{\text {IL2 }}$	LOW-level input voltage SCL, SDA		$\mathrm{V}_{\text {SS }}$	-	$0.3 V_{\text {DD }}$	V
$\mathrm{V}_{\mathrm{IH} 2}$	HIGH-level input voltage SCL, SDA	note 3	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
$\mathrm{l}_{\mathrm{OL} 1}$	LOW-level output current CLK, SYNC	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	1	-	-	mA
$\mathrm{l}_{\mathrm{OH} 1}$	HIGH-level output current CLK	$\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-1	-	-	mA
loL2	LOW-level output current SDA	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	3	-	-	mA
$\mathrm{L}_{\mathrm{L} 1}$	leakage current CLK, SCL, SDA, A0 to A2 and SA0	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\text {SS }}$	-1	-	+1	$\mu \mathrm{A}$
$\mathrm{l}_{\text {L2 }}$	leakage current OSC	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$	-1	-	+1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {POR }}$	power-on reset voltage level		1.0	1.3	1.6	V
C_{1}	input capacitance	note 4	-	-	7	pF
LCD outputs						
V_{BP}	DC voltage tolerance BP0 to BP3		-100	-	+100	mV
V_{S}	DC voltage tolerance S0 to S39		-100	-	+100	mV
R_{BP}	output resistance BP0 to BP3	note 5; $\mathrm{V}_{\mathrm{LCD}}=5 \mathrm{~V}$	-	1.5	-	$\mathrm{k} \Omega$
R_{S}	output resistance S0 to S39	note 5; $\mathrm{V}_{\mathrm{LCD}}=5 \mathrm{~V}$	-	6.0	-	$\mathrm{k} \Omega$

Notes

1. $\mathrm{V}_{\mathrm{LCD}}>3 \mathrm{~V}$ for $1 / 3$ bias.
2. LCD outputs are open-circuit; inputs at $\mathrm{V}_{S S}$ or V_{DD}; external clock with 50% duty factor; $\mathrm{I}^{2} \mathrm{C}$-bus inactive.
3. When tested, $I^{2} \mathrm{C}$ pins $S C L$ and $S D A$ have no diode to V_{DD} and may be driven according to the $\mathrm{V}_{\mathrm{i} 2}$ limiting values given in Chapter 8. Also see Fig. 24.
4. Periodically sampled, not 100% tested.
5. Outputs measured one at a time.

Universal LCD driver for low multiplex rates

11 AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=1.8$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=2.5$ to $6.5 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{f}_{\text {CLK }}$	oscillator frequency	note 1	960	1890	2640	Hz
$\mathrm{t}_{\text {CLKH }}$	input CLK HIGH time		60	-	-	$\mu \mathrm{s}$
tclek	input CLK LOW time		60	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {PD (SYNC) }}$	SYNC propagation delay		-	30	-	ns
tsYNCL	SYNC LOW time		1	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {PD (LCD) }}$	driver delays with test loads	$\mathrm{V}_{\mathrm{LCD}}=5 \mathrm{~V}$; note 2	-	-	30	$\mu \mathrm{s}$

Timing characteristics: $\mathrm{I}^{2} \mathrm{C}$-bus; note 3

$\mathrm{f}_{\text {SCL }}$	SCL clock frequency		-	-	400	kHz
$\mathrm{t}_{\text {BUF }}$	bus free time between a STOP and START		1.3	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD; }}$ STA	START condition hold time		0.6	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ STA	set-up time for a repeated START condition		0.6	-	-	$\mu \mathrm{s}$
t Low	SCL LOW time		1.3	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	SCL HIGH time		0.6	-	-	$\mu \mathrm{s}$
t_{r}	SCL and SDA rise time	$\mathrm{f}_{\text {SCL }}=400 \mathrm{kHz}$	-	-	0.3	$\mu \mathrm{s}$
		$\mathrm{f}_{\mathrm{SCL}}<125 \mathrm{kHz}$	-	-	1.0	$\mu \mathrm{s}$
t_{f}	SCL and SDA fall time		-	-	0.3	$\mu \mathrm{s}$
C_{B}	capacitive bus line load		-	-	400	pF
$\mathrm{t}_{\text {SU; DAT }}$	data set-up time		100	-	-	ns
$\mathrm{t}_{\text {HD } ; \text { DAT }}$	data hold time		0	-	-	ns
$\mathrm{t}_{\text {SU; }}$ STO	set-up time for STOP condition		0.6	-	-	$\mu \mathrm{s}$
tsw	tolerable spike width on bus		-	-	50	ns

Notes

1. Typical output duty factor: 50% measured at the CLK output pin.
2. Not tested in production.
3. All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to V_{IL} and V_{IH} with an input voltage swing of V_{SS} to V_{DD}.

	V_{DD}	
$\mathrm{CLK} \overbrace{(2 \%)}^{3.3 \mathrm{k} \Omega} 0.5 \mathrm{~V}_{\mathrm{DD}}$	SDA, SCL (2%)	$-v_{D D}$
BP0 to BP3, and		MCE439

Fig. 21 Test loads.

Universal LCD driver for low multiplex rates

Fig. 22 Driver timing waveforms.

Fig. $231^{2} \mathrm{C}$-bus timing waveforms.

Universal LCD driver for low multiplex rates

12 BONDING PAD INFORMATION

Table 15 Bonding pad locations
All x / y coordinates represent the position of the centre of each pad (in $\mu \mathrm{m}$) with respect to the centre $(x / y=0)$ of the chip (see Fig.23).

SYMBOL	PAD	COORDINATES	
		\mathbf{x}	\mathbf{y}
SDA	1	-34.38	-876.6
SCL	2	+109.53	-876.6
SCL	3	+181.53	-876.6
SYNC	4	+365.58	-876.6
CLK	5	+469.08	-876.6
V $_{\text {DD }}$	6	+577.08	-876.6
OSC	7	+740.88	-876.6
A0	8	+835.83	-876.6
A1	9	+1005.48	-630.9
A2	10	+1005.48	-513.9
SA0	11	+1005.48	-396.9
V SS 2	12	+1005.48	-221.4
V LCD	13	1005.48	10.71
BP0	14	1005.48	156.51
BP2	15	1005.48	232.74
BP1	16	1005.48	308.97
BP3	17	1005.48	385.2
S0	18	1005.48	493.2
S1	19	1005.48	565.2
S2	20	1005.48	637.2
S3	21	1005.48	709.2
S4	22	347.22	876.6
S5	23	263.97	876.6
S6	24	180.72	876.6
S7	25	97.47	876.6
S8	26	14.22	876.6
S9	27	-69.03	+876.6
S10	28	-152.28	+876.6
S11	29	-235.53	+876.6
S12	30	-318.78	+876.6
S13	31	-402.03	+876.6
S14	32	-485.28	+876.6
S15	33	-568.53	+876.6
S17	34	+876.6	
		+876.6	

SYMBOL	PAD	COORDINATES	
		\mathbf{x}	\mathbf{y}
S18	36	-1005.5	+625.59
S19	37	-1005.5	+541.62
S20	38	-1005.5	+458.19
S21	39	-1005.5	+374.76
S22	40	-1005.5	+291.33
S23	41	-1005.5	+207.9
S24	42	-1005.5	+124.47
S25	43	-1005.5	+41.04
S26	44	-1005.5	-42.39
S27	45	-1005.5	-125.8
S28	46	-1005.5	-209.3
S29	47	-1005.5	-292.7
S30	48	-1005.5	-376.1
S31	49	-1005.5	-459.5
S32	50	-1005.5	-543
S33	51	-1005.5	-625.6
S34	52	-735.03	-876.6
S35	53	-663.03	-876.6
S36	54	-591.03	-876.6
S37	55	-519.03	-876.6
S38	56	-447.03	-876.6
S39	57	-375.03	-876.6
SDA	58	-196.38	-876.6
SDA	59	-106.38	-876.6
Alignment	marks		
C1		+930.42	-870.3
C2		-829.98	-870.3

Table 16 Gold bump dimension PCF8576DU/2DA/2

DESCRIPTION	DIMENSION
Gold bump dimension	$52 \mu \mathrm{~m} \times 80 \mu \mathrm{~m} \times 15 \mu \mathrm{~m}$
Gold bump tolerance	$3 \mu \mathrm{~m}$

Universal LCD driver for low multiplex rates

Chip dimensions: approximately $2.26 \times 2.01 \mathrm{~mm}$.
Bump dimensions (except pad 1): $52 \times 80 \times 17.5$ (height) $\mu \mathrm{m}$.
Bump dimensions (pad 1): $52 \times 76 \times 17.5$ (height) $\mu \mathrm{m}$.
Alignment marks: diameter $=72 \mu \mathrm{~m}$.
Fig. 23 Bonding pad locations.

Universal LCD driver for low multiplex rates

13 DEVICE PROTECTION

Fig. 24 Device protection diagram.

Universal LCD driver for low multiplex rates

14 TRAY INFORMATION

For dimensions, see Table 17.

Fig. 25 Tray details.

Table 17 Tray dimensions (see Fig.25)

SYMBOL	DESCRIPTION	VALUE
A	pocket pitch, in x direction	5.59 mm
B	pocket pitch, in y direction	6.35 mm
C	pocket width, in x direction	3.16 mm
D	pocket width, in y direction	3.16 mm
E	tray width, in x direction	50.8 mm
F	tray width, in y direction	50.8 mm
G	cut corner to pocket 1,1 centre	5.83 mm
H	cut corner to pocket 1,1 centre	6.35 mm
x	number of pockets in x direction	8
y	number of pockets in y direction	7

The orientation of the IC in a pocket is indicated by the position of the IC type name on the die surface with respect to the chamfer on the upper left corner of the tray.

Fig. 26 Tray alignment.

Universal LCD driver for low multiplex rates

15 PACKAGE OUTLINES

TQFP64: plastic thin quad flat package; 64 leads; body $10 \times 10 \times 1.0 \mathrm{~mm}$
SOT357-1

Universal LCD driver for low multiplex rates

DIMENSIONS (mm are the original dimensions).

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	\mathbf{Z}	$\boldsymbol{\theta}$
mm	1.2	0.15	1.05	0.25	0.28	0.2	14.1	6.2	0.5	8.3		1	0.8	0.50	0.25	0.08	0.1	0.5
		0.05	0.85	0.2	0.17	0.1	13.9	6.0	0.5	7.9	1	0.4	0.35	0.25		8°		

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT364-1		MO-153			-	

Universal LCD driver for low multiplex rates

16 SOLDERING

16.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

16.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 seconds and 200 seconds depending on heating method.

Typical reflow peak temperatures range from
$215^{\circ} \mathrm{C}$ to $270^{\circ} \mathrm{C}$ depending on solder paste material. The top-surface temperature of the packages should preferably be kept:

- below $225^{\circ} \mathrm{C}$ (SnPb process) or below $245{ }^{\circ} \mathrm{C}$ (Pb-free process)
- for all BGA, HTSSON..T and SSOP..T packages
- for packages with a thickness $\geq 2.5 \mathrm{~mm}$
- for packages with a thickness $<2.5 \mathrm{~mm}$ and a volume $\geq 350 \mathrm{~mm}^{3}$ so called thick/large packages.
- below $240^{\circ} \mathrm{C}\left(\mathrm{SnPb}\right.$ process) or below $260^{\circ} \mathrm{C}$ (Pb-free process) for packages with a thickness $<2.5 \mathrm{~mm}$ and a volume < $350 \mathrm{~mm}^{3}$ so called small/thin packages.

Moisture sensitivity precautions, as indicated on packing, must be respected at all times.

16.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm , the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
- smaller than 1.27 mm , the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at $250^{\circ} \mathrm{C}$ or $265^{\circ} \mathrm{C}$, depending on solder material applied, SnPb or Pb -free respectively.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

16.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$.

When using a dedicated tool, all other leads can be soldered in one operation within 2 seconds to 5 seconds between $270^{\circ} \mathrm{C}$ and $320^{\circ} \mathrm{C}$.

Universal LCD driver for low multiplex rates

16.5 Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE $^{(1)}$	SOLDERING METHOD	
	WAVE	REFLOW
(2)		
BGA, HTSSON..T(3), LBGA, LFBGA, SQFP, SSOP.. ${ }^{(3)}$, TFBGA, VFBGA, XSON	not suitable	suitable
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, HSQFP, HSSON, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable ${ }^{(4)}$	suitable
PLCC(5), SO, SOJ	suitable	suitable
LQFP, QFP, TQFP	not recommended ${ }^{(5)(6)}$	suitable
SSOP, TSSOP, VSO, VSSOP	not recommended ${ }^{(7)}$	suitable
CWQCCN..L(8), PMFP ${ }^{(9)}$, WQCCN..L(8)	not suitable	not suitable

Notes

1. For more detailed information on the BGA packages refer to the "(LF)BGA Application Note"(AN01026); order a copy from your Philips Semiconductors sales office.
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
3. These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature exceeding $217^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$ measured in the atmosphere of the reflow oven. The package body peak temperature must be kept as low as possible.
4. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
5. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
6. Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm .
7. Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than 0.65 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm .
8. Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by using a hot bar soldering process. The appropriate soldering profile can be provided on request.
9. Hot bar soldering or manual soldering is suitable for PMFP packages.

Universal LCD driver for low multiplex rates

17 DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ${ }^{(1)}$	PRODUCT STATUS ${ }^{(2)(3)}$	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

18 DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

19 DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Universal LCD driver for low multiplex rates

Bare die - All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing for a period of ninety (90) days from the date of Philips' delivery. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are no post packing tests performed on individual die or wafer. Philips Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, Philips Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in which the die is used.

20 PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips $I^{2} \mathrm{C}$ components conveys a license under the Philips' $I^{2} \mathrm{C}$ patent to use the components in the $\mathrm{I}^{2} \mathrm{C}$ system provided the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ specification defined by Philips. This specification can be ordered using the code 939839340011.

Philips Semiconductors - a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 402724825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

